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Abstract-A model for mechanical contact including friction, wear and heat generation is proposed.
By defining an internal state variable for the wear process, a generalized standard model for contact,
friction and wear is derived from the principle of virtual power and the fundamental laws of
thermodynamics, Within the frame of the generalized standard model some specific constitutive
models are presented, For instance, a free energy corresponding to an extension of Signorini's
unilateral contact conditions to include the wear process at the interface and having a linear
tangential compliance between the relative tangential displacement and the tangential contact
traction is suggested, Furthermore, a dual pseudo-potential with a friction and wear limit criterion
in agreement with Coulomb's law of friction and Archard's law of wear is given. In order to study
existence and uniqueness questions, this pair of free energy and dual pseudo-potential is analysed
in a one point elastic quasi-static contact problem with two degrees of freedom and thermal effects
neglected. The so-called rate problem is solved.

I. INTRODUCTION

In this paper a continuum thermodynamic model for interfacial phenomena including
contact, friction and wear is proposed. The framework is that of small displacements,
implying small slip. Consequently, the model is mainly intended for studying fretting, a
wear phenomenon arising when contacting surfaces undergo oscillatory displacements with
small amplitudes.

Following a line of reasoning developing in works by Onsager (1931), Ziegler (1958;
1963), Coleman and Noll (1963), Moreau (1970; 1974), Halphen and Nguyen (1975),
Nguyen (1977), Germain et af. (1983) and others, a method for deriving constitutive
equations based on the concept of a generalized standard material is used. The method
ensures satisfaction of the dissipation inequality by deriving the constitutive equations from
a free energy potential and a dissipation potential.

The first step of the method consists in using the method of virtual power and the
fundamental principles of thermodynamics, coupled with an internal variable rep
resentation of the state, to derive state laws and a dissipation inequality. The form of the
state laws and the dissipation inequality are specified by the choice of internal variables
and the particular form of the free energy.

The next step is to chose evolution laws for the internal variables, so-called comple
mentary constitutive laws. From the point of view of the basic principles of thermodynamics
there is a lot of freedom in choosing these evolution laws. However, if one chooses to obey
a maximum dissipation principle (Onsager, 1931; Ziegler, 1958; 1963), then the evolution
laws are expressed by means of gradients of a function of rates of internal variables, a so
called dissipation potential, in the same way as the state laws follow from the free energy.
The whole problem of specifying a constitutive law is now reduced to specifying two
potentials-the free energy and the dissipation potential. A material obeying such a law is
called a generalized standard material.

It is important to recognize that due to the work of Moreau (1970; 1974), it is possible
to include non-smooth phenomena like plasticity and friction within the class ofgeneralized
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standard materials, by taking the dissipation potential as convex, but not necessarily
differentiable. Such non-differentiable potentials were called pseudo-potentials by Moreau.

Another important observation is that it is admissible to include a dependence on the
state in the dissipation potential [see for example Lemaitre and Chaboche (1990)], i.e. a
family of potentials are considered. In this way it is possible to treat, within the concept of
a generalized standard material, phenomena such as non-associated plasticity and friction
with a non-constant normal force. In this respect see also Ziegler (1981).

The above method for deriving constitutive relations was used by Fremond (1987;
1988) to treat material surfaces and to formulate a theory of adhesion. He also extended
the above theory in that non-smooth free energies as well as non-smooth dissipation
potentials were used. The framework of Fremond was utilized in Klarbring (l990a) to
derive different models for frictional contact. In Johansson and Klarbring (1993) these
ideas were extended to take into account frictional heat generation and heat transfer across
the contact interface. The present paper is a further extension of this line of work where
wear is treated in the same spirit.

In this paper, two particular forms of the free energy and one specific dual pseudo
potential are suggested. The two free energies lead to an extension of the classical Signorini
conditions of unilateral contact, taking the wear process at the interface into account. The
second one also includes a linear tangential compliance between the relative tangential
displacement and the tangential contact traction, which is an approximation of the non
linear behaviour observed from experiments (see, e.g. Wriggers et aI., 1990).

A dual pseudo-potential with a general friction and wear limit criterion is investigated,
from which Coulomb's law of friction and Archard's law of wear are derived. When an
elliptic norm is used in the friction and wear criterion, an anisotropic version of Archard's
wear law is derived, which is identical to the wear model proposed by Mroz and Stupkiewicz
(1994) who assumed that the wear rate is proportional to the rate of the frictional dissi
pation.

To gain understanding of the constitutive behaviour of the proposed free energies and
the dual pseudo-potential corresponding to Coulomb's law of friction and Archard's law
of wear, a one point contact problem with two degrees of freedom and thermal effects
neglected is studied. The so-called rate problem is solved, i.e. when a contact state is known
at a time t the change of the state due to the change of the external loads is determined.
Existence and uniqueness of these solutions are discussed. The method of analysis follows
Klarbring (l990b) [see also Martins el al. (1994)], where conditions for uniqueness and
existence of solutions for a one point elastic contact problem with Signorini contact and
Coulomb friction were established. Similar conditions are derived for the constitutive model
in this paper. These conditions depend on the coefficient of friction, all stiffness coefficients,
the contact force, the tangential compliance and the wear parameters.

The contents of this study are as follows: in Section 2 the generalized standard model
is derived from the principle of virtual power, the balance of energy and the second law of
thermodynamics; in Section 3 constitutive models for the interface, within the frame of the
generalized standard model, are suggested and discussed; in Section 4 conditions for
uniqueness and existence of solutions to the rate problem are established; and in Section 5
concluding remarks are presented.

2. DERIVAnON OF A GENERAL MODEL

Let the open disjoint regions n'(l = I, 2) c .?Jd(d = 2, 3) with piecewise smooth boun
daries an' be occupied by two continuous deformable bodies, see Fig. I. Both bodies are
subjected to body forces b, prescribed tractions t' on r~ c an' and fixed displacements on
r~, c an'. The displacement field of the bodies is denoted by u.

The material boundaries r~ c ani with outward unit normal vectors n~ represent the
potential contact surfaces. Since only problems with small displacements will be considered,
the potential contact surfaces and the corresponding normal vectors have to be almost
identical, i.e. r; ~ nand n; ~ -n;. This makes it possible to define a common contact
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Fig. 1. The two bodies considered, defined by the regions n'(! = L 2) c :JP<'(d = 2.3).

surface C ~ r} ~ r; with outward unit normal vector nc ~ n} ~ - n~, i.e. each particle
on r} is coupled with a particle on r~ in a one-to-one correspondence.

2.1. The method ofvirtual power
The method of virtual power, in the sense of Germain (1973), is used to derive the

equilibrium equations and to identify the internal forces as the Cauchy stress and the
contact traction vector. For any part :?Z c Ql U Q2 such that o!?LJ n r} ~ c:?Z n r;, where ~

is in the sense indicated above, the virtual power of inertial forces balances the virtual
power of all internal and external forces for any virtual velocity field v.

Restricting ourselves to quasi-static problems, the principle of virtual power reads, for
:?Z c QI U Q2 taken such that c:?Z n r} ~ i3:?Z n r~,

(I)

where 11 is the set of kinematically admissible virtual velocity fields.
The virtual power of internal and external forces are defined as:

Pi = - ra:tdv-f. .P·WdA,
J!i (~::Jnr,

(2)

where a and P are internal forces in the terminology of the method of virtual power, s is
the infinitesimal strain tensor, v = Ii is the velocity field and w = U

1
_U

2 is the relative
displacement vector between coupled particles on C. A superimposed hat denotes a virtual
quantity, a superimposed dot stands for right-hand time derivative, and: and, are the inner
products between second-order tensors and vectors, respectively. Notice that all occurring
time derivatives in the text are interpreted as right-hand derivatives.

From eqn (1), the equilibrium equations and Cauchy's theorem can be derived. The
symmetry of the infinitesimal strain tensor s = ST implies that only the symmetric part of
the internal force a gives a contribution to the virtual power. Therefore, a is considered to
be symmetric. With suitable choices of V, the following equations are obtained from eqn
(1) :

diva+b = 0 in :?iJ,

an = t on i3fi-r"

(3)

(4)

(5)
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where (11 is the limit of (1 when approaching Ie from within fZJ n a' and n is the outward
unit normal vector on a~ - C. The symmetry of (1, eqns (3) and (4) imply that (1 can be
interpreted as the Cauchy stress and eqn (5) implies that p can be interpreted as the contact
traction vector.

2.2. The principles of thermodynamics
In this subsection, the Clausius-Duhem inequalities for the bodies a' and the material

interface r e are derived from the first and second laws of thermodynamics by introducing
the Helmholtz free energies.

The two basic principles of thermodynamics are postulated as:

where Iff is the internal energy, Px is the power of external forces obtained by evaluating
eqn (2) for the real velocity, 2. is the heat supply per unit time, Y' is the entropy, r is the
internal heat production, q is the heat flux vector and T is the absolute temperature in the
bodies 0 1.

The internal energy Iff, the entropy Y' and the heat supply per unit time 2. are defined
as:

Iff = LpedV+ f;ynr EdA,

Y' = LpSdV+ f,.vnr,SdA,

2. = LrdV- f,.v-r, q·ndA,

where e is the specific internal energy, s is the specific entropy, E is the surface density of
internal energy on r cand S the surface density of entropy on Ie'

Noting that ~ is arbitrary, it is possible to express the first and second laws of
thermodynamics on local form as:

pi! = (1:t+r-div q }

. r d' (q) in 0
1
u0

2
,

ps;:' T - IV T
(6)

on In (7)

where q' and TI (I = I, 2) are the limits of q and T, respectively, when approaching C from
within ~ n 0 1

•

Next, we introduce the Helmholtz free energies tj;, for the volume of bodies, and 'P,
for the area of the contact interface, as :

tj; = e-sT, 'P = E-S:Y. (8)

where :Y is the intrinsic temperature on Ie" Moreover, the contact traction vector p and



Generalized standard model for contact, friction and wear 1821

the relative displacement vector ware decomposed into a normal component and a tan
gential vector as :

where the normal vector Dc was defined previously, I is the identity tensor and @ is the
tensor product.

By combining eqns (6)-(8), the Clausius-Duhem inequalities for the bodies QI and the
interface C are obtained as:

. . VT ,
pljJ:::::; u:t-psT-q' T in QI uQ", (9)

(10)

where el = T1-.'!T are the temperature differences between each body QI and the interface
C. From here on, it is assumed that constitutive laws for the bodies Qi, satisfying eqn (9),
exist and our attention will instead be focussed on the Clausius~Duhem inequality for the
interface given in eqn (10).

2.3. A generalized standard modelfor the interface
In this subsection, a generalized standard model for the interface which takes contact,

friction, wear and thermal effects into account is derived. The generalized standard model
is given by a class of free energies and a class of dual pseudo-potentials from which the
state laws and the complementary laws are defined. Using these constitutive laws we obtain
a theory where all processes satisfy the reduced dissipation inequality [see, e.g. Lemaitre
and Chaboche (1990) and Maugin (1992)].

The modelling of dissipative phenomena, such as friction and wear, may be achieved
by the use of internal state variables. We will introduce two internal state variables denoted
w~ and w".

Firstly, following the ideas of Michalowski and Mroz (1978), Curnier (1984), Cheng
and Kikuchi (1985), Klarbring (1990a) and others, the relative tangential displacement is
decomposed into one reversible part and one irreversible part:

(11)

The reversible part Wy, sometimes called the adherence part, is due to the elastic defor
mations of the asperities, while the irreversible part Wy, also called the slipping part, may
be attributed partly to the plastic deformations of these asperities but is mainly to the
rupture of the junctions between the asperities. This can be compared to the decomposition
made in plasticity of the strain into one elastic part and one plastic part.

Secondly, the wear process at the interface is modelled by the internal state variable
W

W
• Wear is influenced by several interfacial phenomena on a micro-scale, depending on

kinematics, material and geometry of the bodies and the environment. These interfacial
phenomena are normally explained by four major wear mechanisms [see, e.g. Burwell
(1958)}, namely, adhesive, abrasive and corrosive wear and surface fatigue, but other minor
mechanisms also exist [see, e.g. Suh (1973)]. Eventually, the result of the wear mechanisms
can be identified on a macro-scale as wear debris. In our model, the wear is identified as an
increase in the gap between the bodies, i.e. the internal state variable w" is interpreted as a
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adhesive wear
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Fig. 2. Interpretation of the internal state variable 'r H
•

gap in the normal direction Dc between the bodies owing to the wear mechanisms taking
place at the interface, see Fig. 2.

In our contribution Stromberg et al. (1995), we introduced one internal state variable
for each wear mechanism. However, it turns out that for the particular free energies studied
below only the sum of these state variables is of interest. Therefore, this setting is already
used here at the outset.

As a general constitutive assumption we consider the following class of free energies:

(12)

which is required to be convex with respect to (WN, w~, w") and differentiable with respect
to (ff, e', t}2).

Next, we define the following which will be identified as one part of the state laws:

and

(13)

_ c\f'
-s=--

cY'
c\f'

-01=- (1=1,2).
oel

(14)

Here a\f' denotes the subdifferential with respect to (WN, w~, w")' holding (Y, e1
, e2

) fixed.
Concerning concepts of convex analysis, such as the subdifferential, see Appendix A or,
more fully, e.g. Hiriart-Urruty and Lemarechal (1993).

The time rate of change of \f' in eqn (12) at a time t is given by:

'P = lim \f'(t+At)-\f'(t)
dl~O+ I1t

= lim \f'[WN(t+At), w~(t+At),w"(t+At), ff(t), e' (t), e2 (t)] -\f'(t)

dHO+ I1t

(15)

where \f'(t) = \f'[WN(t), wT(t), w"(t), Y(I), e' (t), e2 (t)]. A useful expression of eqn (15) is
obtained by use of the convexity of \f'. The definition of the subdifferential in eqn (13)
implies that:

\f'[WN(t+At), w~(t+At),w"(t+l1t), ff(t), e1(t), e2 (t)] ~ \f'(t)

+ PN[WN(t+ 11t) - wN(t)] + PT' [w~(t + At) - w~(t)] -1V[w"(t+At) - w"(t)],
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where PN' PT and "If! belong to the subdifferential evaluated at time t. By dividing this
inequality with a positive time increment M and letting I1t approach zero, one obtains from
eqn (15) the following inequality:

2

'¥ ~ PNWN +PT' ,,;- - "If!w" -S.cT - L e'e',,= 1

(16)

where eqn (14) also has been used. This together with the Clausius-Duhem inequality in
eqn (10) and the decomposition in eqn (11) give:

(17)

This inequality must hold for all admissible evolutions of the system. We assume that
PN, PT and S are state functions, and from the definition in eqn (14) we know that em does
not depend on rr (m = 1,2). Furthermore, if one assumes that wN, "T, .cT and em can take
arbitrary values in any state, and that the evolution of the internal state variables does not
depend on these values, then it follows from eqn (17) that the following must hold:

and

em = 0 (m = 1,2) =;. \I' = \I'(WN' w;-, wW, 5),

(18)

(19)

(20)

Johansson and Klarbring (1993) considered the case when the admissible values of WN
are depending on the state, which in fact is the case for Signorini-like contact conditions,
and derived a more general law for PN compared to eqn (18). Also, in the case of rate
independent behaviour of friction or plasticity type, the evolution of the internal state
variables does actually depend on the rates of the observable variables. Nevertheless, eqns
(18)-(20) are sufficient conditions for the inequality in eqn (17) to hold for such cases also,
and are therefore assumed to hold in the following.

The state laws are defined by eqns (13), (14) and (18). The left-hand side of the
inequality in eqn (20) represents the dissipation at the interface. Furthermore, the associated
force "If!, defined in eqn (13), is identified in eqn (20) as the wear driving force for the wear
process.

In order to satisfy the dissipation inequality in eqn (20), we assume that a family of
lower semi-continuous convex potentials exists <I> = <I>(PT, "If!, 8',82

; .'?'), parametrized by
.'?' = (PN, w;-, wT,w", 5, T', T 2

), from which the complementary laws are defined by:

and taken such that:

(21)

o= <1>(0,0,0,0; &), (0,0,0,0) E 0<1>(0, 0, 0, 0; .'?'). (22)

In the terminology of Moreau (1974), <I> = <I>(PT' "If!, 81
, 82 ;.'?') is the dual, in the sense

of convex analysis, of a pseudo-potential. The dissipation inequality in eqn (20) will always
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be fulfilled by the complementary laws defined in eqn (21) provided eqn (22) holds, see
Appendix A.

The free energy in eqn (19) and the dual pseudo-potential defined above constitute,
together with the state laws defined by eqns (13), (14) and (18) and the complementary
laws in eqn (21), the generalized standard model for the interface. The model includes
contact, friction, wear and thermal effects.

3. CONSTITUTIVE MODELS FOR THE INTERFACE

Signorini's unilateral contact conditions and Coulomb's law of friction are well-known
constitutive models for contact and friction. We will extend these laws to take tangential
compliance, wear and thermal effects at the contact interface into account. Within the
frame of the generalized standard model, two specific free energies and one specific dual
pseudo-potential with a general friction and wear limit criterion are proposed.

3.1. Two specific free energies
The first specific free energy is an extension of the free energy corresponding to

Signorini's unilateral contact conditions, to include wear and thermal effects. The internal
variable W

W is used to update the initial gap g between the bodies due to wear processes at
the interface. Thus, we consider:

(23)

where

and IK denotes the indicator function of a set K, see Appendix A. The closed convex set C
corresponds to an extension of Signorini's unilateral contact conditions and the use of the
closed convex set D is equivalent to an assumption of zero tangential reversible displace
ment. The free energy in eqn (23) is also given a thermal dependency: (fj is the heat capacity
per unit area and :!To is a reference temperature.

The second form of the free energy which is considered includes tangential compliance
at the interface. We modify 'P] so as to read:

(24)

where a simple constitutive assumption of a linear elastic behaviour between PT and WT has
been added [see, e.g. Wriggers et al. (1990)]. kT is a constant material parameter representing
the tangential stiffness of the asperities and I-I is the Euclidean norm. A physically more
realistic assumption would be that kT depends on the contact pressure. This was assumed
in Klarbring (1990a).

Let us derive the state laws implied by 'P} and 'P2explicitly, knowing that the sub
differential of an indicator function of a closed convex set is equal to the normal cone of
this set, see Appendix A. Inserting eqns (23) and (24) in eqns (13), (14) and (18) gives:

PTEfYl2 and wT= 0 for 'P = 'PI,

(25)

(26)

(27)
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(28)

Note that the wear driving force "If' is always equal to the contact pressure PN for these free
energies. Also note that '¥ 1 and '¥2 only differ in that '¥2 implies a tangential compliance at
the contact interface, see eqns (26) and (27).

The change in internal energy eqn (7) can be expressed by use of these state laws.
Equations (7) and (8) and (23)-(28) give in case of '¥ I that:

(29)

and in case of '¥2 that:

Obviously, eqns (29) and (30) serve as evolution laws for the intrinsic temperature at the
interface.

3.2. A specific dual pseudo-potential
A dual pseudo-potential with a general friction and wear limit criterion, and a thermal

dependency similar to Fourier's heat diffusion law for solid bodies are suggested and
investigated. The proposal is:

(31 )

where

is a closed convex set, ~(PT' "If"; &) is a quasi-convex function describing the friction and
wear limit criterion, as well as the sliding rule and the wear law, and 9' = 8'(il') is thermal
contact conductances. Concerning more explicit relations for thermal contact conductances
[see, e.g. Fried (1969)].

The complementary laws (21) are expressed with eqn (31) as:

(32)

(33)

where N F (!!') denotes the normal cone of the set F (&). Here eqn (32) defines the friction
and wear laws, and (33) is the equation governing the heat flow across the contact interface.
If ~(PT' "fI/; il') is differentiable with respect to PT and "11/, then we obtain from eqn (32) :

(34)

Several choices of ~(PT,·ff/;il') are possible. A simple constitutive assumption of a
friction and wear model is an extension of Coulomb's friction cone. Let:
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(35)

where k is a wear coefficient, then the wear law in eqn (34) becomes:

(36)

Thus, the wear rate is proportional to the sliding velocity and the contact pressure, which
is in agreement with experiments [see, e.g. Rabinowicz (1965)]. A similar friction and wear
limit criterion as in eqn (35) was suggested by Curnier (1984), with kPN "If' replaced with a
force of wear associated to a cumulated slip.

By choosing k = ka/3ps where ka is a wear constant that Archard (1953) interpreted as
the probability that a fragment will be formed at an adhesive joint and Ps is the penetration
hardness of the softer material, we achieve a local form of Archard's wear lawt from eqn
(36), i.e.

(37)

As we have already seen for 'PI in eqn (23) and 'P2in eqn (24), the wear driving force
"If' is equal to the normal contact pressure PN for some specific classes of free energies. In
such cases the softening of the Coulomb friction criterion induced by using eqn (35) can be
removed by taking:

k 2 k "If'7( "",'. (}l)) - [[_ _ aPN aPN
.'!I' PT," ,;:r - PT J.1PN 3 + 3 '

Ps Ps
(38)

which does not affect the form of Archard's law of wear given in eqn (37). The friction and
wear criterion in eqn (35) is discussed in Section 3.3., and the criterion in eqn (38) is
analysed in Section 4.

Let us change the Euclidean norm used in eqns (35) and (38) to an elliptic norm. Let
the rectangular coordinate system x and y specify the tangential plane normal to On and let
PTX and PH be the components of PT in this coordinate system. Then a change of the
Euclidean norm in eqns (35) and (38) to:

(39)

takes anisotropic effects of the surfaces into consideration. The principle axes of the ellipse
(tX x , tX y) account for the existence of preferred directions of slip at the contact interface.
Anisotropic friction conditions have been studied by Curnier (1984), Michalowski and
Mroz (1978), He and Curnier (1993), and others.

With the elliptic norm (39) in eqns (35) and (38), we obtain an anisotropic version of
Archard's wear law from eqn (34), i.e.

(40)

Thus, the wear rate will vary with the orientation of the sliding velocity vector. Such
correlations between friction and wear have been reported by Jacobs et at. (1990), Miyoshi
and Buckley (1982), and others. Moreover, an elliptic norm is physically reasonable when
considering wear processes, as wear may induce anisotropic roughness at the surfaces. One

t In our contribution (Stromberg et al., 1995), Coulomb's friction cone was extended with ka1Y'2/6p, leading
to Archard's wear law when 1fI = PN > O. Unfortunately, this extension implies that the wear rate can take
arbitrary values when P" = 0, which is not in agreement with physical intuition.
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may think of a situation when OCx and OCy depend on some cumulated wear in each of the
principle directions x and y of the interface.

Anisotropic wear models were investigated by Mroz and Stupkiewicz (1994). They
assumed that the wear rate is proportional to the frictional dissipation. With our notations
this reads for the elliptic norm (39)

• II k . ; k j( .i)' ( . i )' II IIW = MPT' WT = M (XXWTX - + OCyWTt" - PT , (41)

where k M is a wear constant. This law is similar to the wear law derived in eqn (40) as IpTl1
is closely related to PN' For instance, if one assumes that IlpTil = ItPN when friction is
developed, then eqn (40) can be obtained from eqn (41) by replacing k M with ka/3pslt.

However, in our model the wear process is a part of the dissipation and the change in
internal energy. For the friction and wear limit criterion in eqn (38) corresponding to
Coulomb's law of friction and Archard's law of wear, the dissipation inequality (20)
becomes with "If" = PN :

k 21w; I 2 [)1«(}1)2
I .; I+ aPN T + '" --_. >- 0flPN WT 3 L.. C/ •

Ps 1~1 T 1
(42)

Here the relations in eqn (33) have also been used. The change in internal energy for \III in
eqn (29) can be reformulated to:

(43)

It can be seen that the change in internal energy is almost identical to the dissipation in eqn
(42). The change in internal energy for \112 in eqn (30) is almost identical to eqn (43) except
for the additional term kTwT' wT.

3.3. Discussion of the friction criteria
By choosing the function ~(PT, 111;.9') as in eqn (35) we obtain Archard's law of wear

(37), [see also Holm (1946)], and the friction law:

. ( kaPN'If/)J. IPTI- flP" + ---~ = 0,

(44)

which is a slight modification of Coulomb's law of friction. Note that 1/' = PN for the
particular choices of the Helmholtz free energy of the contact interface made in this paper.

By modifying ~(PT' 'if/'; 2P) to the form in eqn (38) it is possible to obtain Archard's
law of wear and Coulomb's law of friction, within the presented thermodynamical frame
work. This is tempting since these are accepted first approximations of wear and friction
models, which have stood the test of time. We believe, however, that there are reasons to
tentatively retain ~(PT' 1f~;.9') in the form of eqn (35), and thus to consider the friction
law (44). These reasons are in short:

1. Taking ~(PT' 111; 2P) in the form of eqn (35) is the simplest extension of Coulomb's
friction criteria we have found that serves the purpose of incorporating Archard's law
of wear within our thermodynamical framework. The resulting friction law differs from
Coulomb's law, but for practical purposes, with ka « fl, the difference is unimportant.

2. Nevertheless, taking ~ (PT, 'if/"; 2P) in the form of eqn (35) does introduce a difference
from the classical Coulomb's law. However, we believe that the corresponding friction
law (44) is acceptable from an experimental and intuitive point of view.
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To expand on point 2 above, we note that if if' = PN' which is obtained for the choices
of'P considered in this paper, we obtain the friction criterion:

(45)

The validity of Coulomb's criteria IPTI ~ flPN as a first approximation is well verified
experimentally, but experiments also show a dependency of the friction coefficient on a
number of parameters, and a decrease of the friction coefficient with increasing pressure,
as predicted by eqn (45), is sometimes observed [see, e.g. Suh (1982)].

To defend eqn (45) from an intuitive point of view, we note that Archard's wear law
has been interpreted using an adhesive model involving formation and breaking of adhesive
joints between asperities [see Archard, (1953); Rabinowicz, (1965)]. This is shown in Fig.
3. In this wear model the wear constant ka is interpreted as the probability that an adhesive
joint will break somewhere else than where it was formed, and later break along the path
where it was formed, i.e. a loose wear particle is formed. Rabinowicz (1965) explains the
second stage in the formation of wear fragments with a model involving elastic strain energy
in the fragment.

If we assume that the reason that a joint breaks along an alternative path is that a
path exists where the joint is weaker than along the path where it was formed, it is reasonable
to expect a reduction in the friction force proportional to ka' This is the behaviour predicted
by eqn (45).

To further exploit the adhesive model we note that since, obviously, !PT! ~ 0, it is
necessary to impose the following condition on eqn (45) :

(46)

In most applications we have k a « fl. in which case this condition is fulfilled. However,
interpreting k a as probability. it could, at worst, be equal to 1. Further, in an adhesive
friction model, the coefficient of friction equals the ratio between the shear flow stress and
the normal flow pressure, i.e. fl = r)PI' A simple assumption is to put T, = av!2 and Ps = 3ay,
where ay is the plastic yield strength in uniaxial compression, to give fl = 1/6. More realistic
assumptions, however, must recognize the fact that the normal flow pressure is reduced
when tangential tractions are present in addition to the normal pressure, due to the coupling
between the stress components in a plastic yield criterion. If we put k a = 1 and fl = 1/3 in
eqn (46) we obtain:

jFN
alternative break

___P,-"T_. path, resulting
in wear fragment

y///

Fig. 3. Two interacting surface asperities.
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which is a condition that must be made in an adhesive friction model anyway, as PN = Ps
when the true contact area becomes equal to the apparent area. Thus, it is seen that the
condition IPTI ~ 0, which must be imposed on eqn (45), fits into an interpretation in terms
of an adhesive friction model.

4. A ONE POINT ELASTIC CONTACT PROBLEM

In this section, a contact problem involving one contact point with two degrees of
freedom and thermal effects neglected is considered. The so-called rate problem is solved,
i.e. for a given state of contact and a given rate of change of the external loading, the rate
of change of the state is determined. This problem is solved for the free energy (24)
corresponding to Signorini contact with tangential compliance and the dual pseudo-poten
tial (31) with the friction and wear limit criterion (38) equivalent to Coulomb's law of
friction and Archard's law of wear. Existence and uniqueness of the solutions are discussed.
The same problem for Signorini contact with Coulomb friction was considered by Klarbring
(1990a).

4.1. The model, the state laws and the complementary laws
Let us consider a class ofone point contact problems where the external forces (FT , FN),

the contact forces (PT , PN) and the relative displacements (WT, WN), see Fig. 4, are related
by:

(47)

where the matrix:

is positive definite.
As only one point is considered the contact forces above take the place of the tractions

used before. Moreover, with two degrees of freedom, thermal effects neglected and the
initial gap 9 taken to be equal to zero, the state laws corresponding to '1'2 in eqns (25) and
(27) can be written as:

(48)

and the complementary laws in eqn (32) corresponding to :Ii' (PT , 1(1; 2l') in eqn (38) can be
written as:

Fig. 4. One point elastic contact problem.
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if PN > 0, and:

Here CT and p, have been replaced by CT and P,.
In the following analysis, the result for Signorini contact without reversible tangential

displacement is simply achieved by letting CT --> 0, and the result for Coulomb friction
without wear by letting k. --> O.

4.2. The contact stales and the rate laws
The state ofcontact is given by (WN, w", WT, PN , PT ). In each particular state of contact,

conditions on the rate of change of the state are determined by the so-called rate laws.
These can be derived by making a Taylor expansion in time of the state laws in eqn (48)
and the complementary laws in eqn (49), and then evaluate these expansions for each
particular contact state. The Taylor expansions of eqns (48) and (49) can be found in
Appendix B. For each particular state, the following rate laws are derived:

a. If PT = PN = 0 and WN-W" < 0, then

b. If PT = PN = 0 and WN-W" = 0, then

4.3. The rate problem
For a given state and change in external loading, the rate problem is to find the rate

of change of state. This can be found by using the rate form of eqn (47) :

(50)

together with the rate laws given in Section 4.2. For each contact state, a-d, the rate of
change of state depending on the rate of change in external loading are obtained and
summarized below together with comments and illustrations.

a. The rate of change of the state is (with PN = PT = w~ = 0)
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b. Three different types of solutions are found-separation, stick and slip. The con
ditions on the rates of the external forces are for:

i. separation (i.e. WN < 0, PN = PT = IV~ = 0) :

11. stick (i.e. WN = 0, PN ~ 0, ~v~ = 0 and ~v~ = CTPT):

iii. slip (i.e. WN = w" = 0, PN ~ 0, ~i'~ i= 0 and Ii:; = C r1\) :

In this contact state there exist solutions for all loading directions but they may be
non-unique, which can be seen if one compares the inequalities in b.i-b.iii, defining the
solution to be separation, stick and/or slip. The uniqueness depends on the sign of the
denominator in b.iii, i.e. a1 I - pa 12 sgn (~l'~).

Ifall> plad, then the denominator is greater than zero for both positive and negative
slip, and unique solutions exist for all loading directions. This is illustrated in Fig. 5(a) for
the case when al2 > O. On the other hand, if all < fllad, then the denominator is negative
for positive slip (or negative slip) when al2 > 0 (or ale < 0), and non-unique solutions may
appear. This is shown in Fig. 5(b) for the case when al2 > O. Finally, if all = plal21, then
the denominator is equal to zero for positive or negative slip, depending on the sign of a12,

and the numerators in b.iii must then be equal to zero. In such cases, one finds non-unique
solutions identified as stick and slip for loading directions defined by the first and second
numerators in b.iii.

In conclusion, it exists solutions for all loading directions. but for:

non-uniqueness of solutions may appear. Furthermore, the value of Cr has no influence on

neg.•I...;iP-t__-tF-__+-t~

FT

(a) (b)

Fig. 5. Intermediate contact state (b). Different solutions depending on loading directions when
a 12 > 0: (a) {l < all/(I,,: (b) 11 > (I"a".

SAS 33: 13·1\
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this condition for existence and uniqueness of solutions, but it affects the size ofthe domains
of stick and slip solutions. In the limit CT ---+ 0, we obtain the domain of solutions for
Signorini contact with Coulomb friction.

c. In this contact state unique solutions exist for all loading directions. The solutions
are (with li'N = \i'~ = °and li'~ = CTl\)

Although there is no slip and consequently no wear in this contact state, there can still
be a change in the relative tangential displacement between the bodies. In fretting situations,
a threshold has been observed on the amplitude of the tangential displacement below which
no wear is developed (see e,g. Waterhouse, 1984). Thus this wear model is in agreement
with such observations, if one assumes that the threshold can be explained by the elastic
response of the asperities,

d. Two different types of solutions are identified-stick and slip. We get the following
conditions on the rates of the external forces for:

I. stick (i.e. \i'~ = 0, li'N = °and Ii'; = CTPT) :

[sgn (PT) + pa l 2 CT]FT ~ p(l + all CT)FN,

. '. . k"PNI\i'~1 . .
11. shp (I.e. w~ -# 0, It'" = ------:;p\-- and It'~ = CTPT) :

[sgn (PT) + paI2CT]FT > {l(l +all CT)F", if A> 0,

[sgn (PT)+paI2CT]FT = p(l +all CT)FN if A = 0,

[sgn(PT)+paI2CT]FT<tl(l+alICT)FN if A<O,

where

In this contact state existence and uniqueness of solutions are depending on the sign
of A in eqn (51). This can be seen if one compares the inequalities in d,i and d.ii, defining
the solution to be stick and/or slip. If A > 0, then there exist unique solutions for all loading
directions. Otherwise, i.e. A ~ 0, there are two solutions, one solution or no solution for
different loading directions.

The expressions of A in eqn (51) depend on several parameters. Let us study this
expression for some special cases by letting k" and CT approach zero.

Firstly, if CT -# °and k" ---+ 0, then we get the same condition on uniqueness and
existence of solutions as for Signorini contact with Coulomb friction, i,e. eqn (51) becomes:

For sufficiently small friction coefficients Ac is greater than zero and unique solutions exist
for all loading directions. On the other hand, if

then non-uniqueness and non-existence of solutions appear for positive slip (or negative
slip) if a l 2 > °(or a l 2 < 0). Furthermore, the tangential compliance has no effect on the
condition of uniqueness and existence of solutions for Signorini contact with Coulomb
friction, but the domains of stick and slip solutions are changed.
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Secondly, if k" i= 0 and CT -+ 0, then we get from eqn (51) that:
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which gives the condition on uniqueness and existence of solutions for Signorini contact
with Coulomb friction and Archard's law of wear. Compared to Ac, AA also depends on
k", PN , P, and a22' For a sufficiently large contact force, non-uniqueness and non-existence
can appear for both positive and negative slip, and not only for positive slip or negative
slip as in the previous case, depending on the sign of a 12'

Finally, if k" i= 0 and CT i= 0, then the range of uniqueness and existence of solutions
is decreased further compared to the two previous cases, because det [A] = al l a22

-aT2 > 0 in eqn (51).

5. CONCLUDING REMARKS

In Section 2 a generalized standard model for fretting is derived from the principle of
virtual power, the balance of energy and the second law of thermodynamics. The model is
defined by a free energy and a dual pseudo-potential. A certain internal state variable is
introduced to model the wear process at the interface. It is interpreted as a normal gap
between the bodies owing to wear. In a similar way other internal state variables may be
defined to model other interfacial phenomena.

One may notice that it is necessary to treat the thermal model as a three-body model
to include heat transfer across the contact interface. Otherwise, the temperatures of the
contact surfaces must be equal. In the authors' opinion, an important extension of the
model presented in this paper should be to formulate a complete three-body model, within
the framework ofcontinuum thermodynamics, which includes both thermal and mechanical
effects.

In Section 3 some specific forms of the generalized standard model are suggested. For
instance, a free energy corresponding to an extension of Signorini's unilateral contact
conditions accounting for wear processes at the interface and having a linear tangential
compliance between the tangential displacement and the tangential contact traction is
suggested. Moreover, a dual pseudo-potential with a friction and wear limit criterion
equivalent to Coulomb's law of friction and Archard's law of wear is given. Other friction
and wear criteria are also discussed.

The extension of Signorini's unilateral contact conditions is obtained by use of the
internal state variable defined for the wear process. A contact law with normal compliance
can be extended in a similar way. This type of extensions belongs to a class of free energies
where the wear driving force is equal to the contact pressure. Specific forms of other classes
of free energies have not been considered in this work.

In Section 4 the specific free energy and dual pseudo-potential mentioned above are
analysed for a one point elastic contact problem, where the so-called rate problem is solved.
In the intermediate contact state, i.e. when both the contact force and the gap are equal to
zero, it is shown that solutions exist for all loading directions, but they may be non
unique. The uniqueness depends on /1, all and a12' Moreover, no wear is developed in the
intermediate contact state. Wear is only developed in the contact state with positive or
negative slip and the contact pressure greater than zero. In this contact state, it is seen that
non-uniqueness and non-existence of solutions may appear, depending on fl, a I I' a 12, a22,
CT , k,I' P, and PN . In the other contact states there always exists a unique solution for all
loading directions.
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APPENDIX A. BASIC CONVEX ANALYSIS

Definitions
1. A function f: fJin ---+ fJi u {+ CD}, not identical to + 00, is said to be convex when, for all (x, x') E illn x gr

and all ee E [0, I], there holds:

f(eex+ (I-o:)x') ,;;; cef(x)+ (I-o:)f(x').

2. A set K c fJin is said to be convex if o:x +(I - ee)x' E K whenever (x, x') E K x K and Q( E [0, I].
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3. The indicator function h: !Jtn --+!Jt u { + OC!} for a non-empty set K c !Jtn is defined by:
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ifxEK

otherwise.

4. The subdifJerential offat x is the set defined by:

of(x) = {I:f(x') ;'f(x)+(.'T.x'-X)\!X'E!Jt"}.

where <-,.) is a scalar product on qj".

5. The normal cone NK of a closed convex set K is defined by :

Propositions
I. If K is closed and convex, then:

(52)

ifxEK

otherwise.

2. If:

K = {x:g(x) ~ O},

with g given as a convex differentiable function, and some constraints qualifications are satisfied, then an element
of N K(X) can be expressed as:

I = XVg. ic;. 0, g(x) ~ 0. icg(x) = 0.

3. If I E of(x) ,°= f(O) and °E of(O) then:

(I, x) ;. °
for all x E iJln. This can be seen from eqn (52) by first taking x' = °and x = x:

0= f(O) ;. f(x)+ (I.O-x)

and then taking x' = x and x =°:
f(x);. O+(O,x-O) = 0.

This together forms:

(I, x) ;. f(x) ;. 0.

which implies the above statement.

For a full presentation of convex analysis see Hiriart-Urruty and Lemarechal (1993).

APPENDIX B. TAYLOR EXPANSIONS OF THE STATE LAWS AND THE
COMPLEMENTARY LAWS

The rate laws in Section 4.2 are derived by making a Taylor expansion in a time increment /1t of the state
laws in eqn (48) and the complementary laws in eqn (49), and then for each particular contact state letting !1t
approach zero. The Taylor expansions of interest are presented in this appendix.

The Taylor expansions of eqn (48) are:

PN(t+ !1t)[wN(t +!1t) - WW(t +/1t)] = PN(t)[w,,(t) - w"(t)]

+!1t{PN(t)[WN(t) - w"(t)] + PN(t)[w" (t) - w"(t)]} +M {~PN(t)[WN(t)- w"(t)]

+V'N(t)[W,,(t)-W"(t)] +PN(t)[WN(t)-li'" (t)]} + (I: (/1t') = 0,
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The Taylor expansions of eqn (49) are:

IPT(t +~!)I-IIP~(t+~t) = IPT(t)I- .uP,(t) +M: sgn [PT(t)]PT(t) - .u1\(t): + f (M') ~ O.

A(t+ MHIPT(t+M)I- /lP,,(t +M)] = ;.(tHIPT(t)I- /lP~(!}l

+~!(;.(1):sgn[PT (1)]PT (1)-/lP,,(t)} +X(tHIPT(1)I-/lP,,(1)])+n~I')= O.

If PT(t) = O. then sgn [PT (t)]PT (1) is changed to IPT(1)! in the expressions above.


